NewTon Refrigeration System

NewTon NH₃/CO₂ Cooling System

Forwarding to the future refrigeration Systems

Interior Permanent Magnet (IPM) motor

The system employs an IPM motor to improve drive efficiency. Achieving higher efficiency by 5 to 10% than the conventional induction type.

Revolution speed control by Variable Frequency Drive (VFD)

VFDs are used to drive IPM motors. The rated revolution is set 4,500rpm (partially 5,600rpm) and continuously revolution speed control is equipped as a standard feature to correspond to part load operation. Driving a high speed and controlling revolution speed greatly contribute to energy-saving part load operation.

Adopted shell & plate type heat exchanger

We employed compact and high performance shell & plate heat exchangers on both condenser and evaporator to enable them to exchange heat even with a small differential temperature.

Minimum Ammonia Charge

Minimum ammonia charge from 55 lbs to max. 165 lbs for each package. Employing indirect cooling method enables ammonia to be contained only in the machine room.

New Profile

We developed a new profile for the rotors with advanced machining technology enabling them to reduce internal leakage and achieve higher efficiency.

OVER 30% ENERGY-SAVING

Comparison of before and after introducing NewTon

INDIRECT COOLING METHOD UTILIZING CO₂ CHARACTERISTICS

NewTon system can contain ammonia completely only in machine room to achieve energy-saving and safety.

![Diagram of Cooling System](image)

- **Exterior**
 - Cooling tower
 - Cooling water

- **Machine room**
 - Compressor
 - Condenser
 - Evaporator
 - NH₃

- **Application**
 - Cold storages
 - Ice rinks
 - Freezers
 - CO₂

*estimation from the power company bills
*all electricity including main machine, auxiliary machine, transporting machine, lighting and etc.
For Cold Storage and Ice Plants **NewTon R** & **NewTon C**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25.6°F</td>
<td>-25.6°F</td>
<td>23°F</td>
<td>23°F</td>
<td></td>
</tr>
<tr>
<td>Cooling Capacity</td>
<td>94.5kW/26.8TR</td>
<td>189kW/53.7TR</td>
<td>270kW/76.7TR</td>
<td>235kW/66.8TR</td>
</tr>
<tr>
<td>Motor kW</td>
<td>43kW</td>
<td>86kW (43kW x 2)</td>
<td>120kW</td>
<td>65kW</td>
</tr>
<tr>
<td>C.O.P (EER)</td>
<td>2.2</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for control</td>
<td>AC400/440V x 50/60Hz</td>
<td>AC200/220 V x 50/60Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary: NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Semi-hermetic compound screw</td>
<td>Semi-hermetic single stage screw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive method</td>
<td>VFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor type</td>
<td>IPM motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia Charge</td>
<td>55 lbs</td>
<td>110 lbs</td>
<td>165 lbs</td>
<td>132 lbs</td>
</tr>
<tr>
<td>Outer Dimensions</td>
<td>L109 x W77 x H95</td>
<td>L186 x W94 x H102</td>
<td>L156 x W100 x H104</td>
<td>L134 x W87 x H106</td>
</tr>
<tr>
<td>Net Weight</td>
<td>7275 lbs</td>
<td>14991 lbs</td>
<td>16755 lbs</td>
<td>13228 lbs</td>
</tr>
</tbody>
</table>

The information contained herein is for reference only. Subject to change without notice.